Iodine promoted construction of thioureas from amine

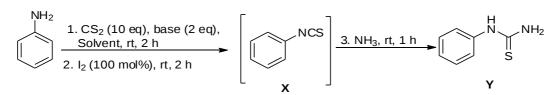
S N Murthy Boddapati¹, Ramana Tamminina²

¹Department of Chemistry, Sir C R Reddy PG College, Eluru, AP, India-534002 ²Department of Chemistry, GITAM (Deemed to be University), Bangalore, Karnataka, India-561203

Abstract : An efficient One-pot three component methodology for the synthesis of various thioureas from amines using iodine as desulfurizing agent. The reactions are rapid facile and accomplished at room temperature. All the substrates could give their respective target products in good to excellent yields. *Keywords* - Desulfurization, Room temperature, Thioureas, Substituted anilines.

I. Introduction

Thiourea is a very important functional group and good intermediate for the synthesis heterocyclcic compounds such as benzothiozole,¹ iminothiazolines,² thiohydantoins,³ 1,3,5-triazines,⁴ 2-amino-oxazolidines⁵ and other compounds such as minoxidil⁶ and herbicides,⁷ which have biological activity. In addition, thioureas are useful precursors in the synthesis of pharmaceutically important heterocycles⁸ and *N*-alkyl or *N*-aryl imides⁹. Many methods for the synthesis of thioureas have been reported, for example, N-substituted thioureas are commonly prepared from the reaction of amines with alkali metal thiocyanates in the presence of a strong acid,¹⁰ aroylisothiocyanates with amines followed by basic hydrolysis,¹¹ isothiocyanates with ammonia or amines in two step reactions,¹² unsubstituted thioureas with primary amines with carbon disulfide in the presence of mercury acetate and aqueous ammonia, primary alkyl amines at high temperature,¹³ and disubstituted cyanamides with hydrogen chloride and LiAlHSH or hydrogen sulfide in the presence of ammonia. Several new methods for the preparation of substituted thioureas have been recently reported.¹⁴Apart from previous reports still mild, efficient and environment friendly method is desired. Therefore, we wish to demonstrate the construction of thioureas from amines using cheap and readily available Iodine as reagent.


II. Results and discussions

Herein, we report a three-component reaction between amine, CS₂ and ammonia solution in the the presence of DMSO solvent using iron at room temperature. The optimization of the reaction conditions was carried out with aniline as model substrate using different bases, solvents and Iodine at varied temperatures (Table 1). The best result was obtained when the reaction was pursued at room temperature using 1 eq of the Iodine with bases like Et₃N, NaOAc and NaHCO₃ in the presence of DMF affording the phenylthiourea (Scheme 1) in 95% conversion (Table 1, entries 5 & 10-11). Firstly, the reaction was checked in the presence of different solvents. Among the solvents DMF gave target product in excellent yield. Other solvents like ethyl acetate, ethanol, DCM and DMSO could give target product in good yield. We have also examined with polar grenary solvent H₂O and no product was observed. Later we have checked with the non-polar solvents like n-Hexane and n-Heptane. Unfortunately no non-polar solvent could give target product. The reaction with other organic base pyridine couldn't give expected product. However, the inorganic bases sodium bicarbonate, sodium acetate and disodium phosphate could give target products in good yield. Finally the less amount of reagent like 50 mol % was examined, however the reaction to provide target product in moderate yield. The control experiment is confirmed that the reaction don't provide final product in the absence of solvent and base, and the strating material is recovered intact. Having the optimal conditions in hand, we explored the scope of this procedure for the substrates having electron donating and electron withdrawing substituent's on the aryl rings. In this connection the various substrates bearing electron donating and electron withdrawing groups were examined under the standard reaction conditions (Table 2). The phenyl ring having electron donating groups such as 4-methyl, 4-methoxy could give their respective aromatic thioureas (Table 2, entries 3-4) in high yield. The unsubstituted phenyl ring also gave target product in quantitative yield (Table 2, entry 1). Electron withdrawing groups such as 4-fluoro and 4-chloro substituents gave their final products in 75-84% yield

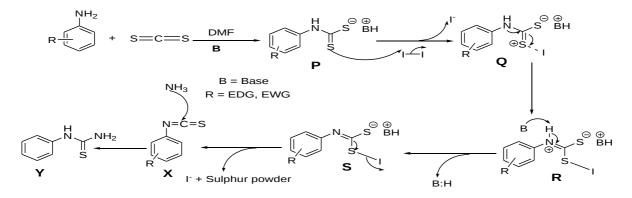
Iodine promoted construction of thioureas from amine

(Table 2, entries 2 and 7). The aryl ring having strong electron withdrawing group $-NO_2$ on second position gave no product (**Table 2**, entry 6). 4-Cyano aniline activity was also examined under optimized reaction conditions, but unfortunately no reaction was observed. Later, the same reaction was tested using strong base, anhydrous potassium hydroxide (KOH) and no target product could observe. Subsequent optimization for the reaction led to increase in yield, we did the reaction with anhydrous potassium hydroxide (KOH) at 80 °C. Very interestingly the reaction could produce target product in moderate yield (**Table 2**, entry 10). Di substituted and ortho-substituted aryl rings could obtain their respective thioureas in good yield (**Table 2**, entries 5 and 8). Finally we have also studied about aliphatic anilines. The aliphatic substrates readily underwent the reaction to produce the target products in high yields (**Table 2**, entries 9 and 10-11).

Table 1: Optimization reaction conditions for the synthesis thiourea.^a

Entry	Solvent	Base	Yield (%)
1	Ethanol	Et ₃ N	45
2	Ethyl acetate	Et ₃ N	80
3	DCM	Et ₃ N	75
4	DMSO	Et ₃ N	75
5	DMF	Et ₃ N	95
6	H ₂ O	Et ₃ N	ND
7	n-Hexane	Et ₃ N	ND
8	n-Heptane	Et ₃ N	ND
9	DMF	Pyridine	55
10	DMF	NaHCO ₃	95
11	DMF	NaOAc	95
12	DMF	Na ₂ HPO ₄	95
13	DMF	NaOAc	67
14	-	-	ND

^a Reaction


conditions: Aniline (2 mmol), CS_2 (10 eq), Et_3N (2 eq), I_2 (100 mol%), Ammonia solution (2 ml) were stirred at room temperature in the presence of respective solvent for 5 h.

	R R H ¹ 1. CS ₂ (10 eq), N DMF, rt, 2 h 2. I ₂ (100 mol%), 3. NH ₃ , rt, 1 h	► [[,]]	$N \longrightarrow NH_2$ S
entry	Substrate	Product	Isolated yield (%) ^a
1	NH ₂		95
2	CI NH2		84
3	MeO NH ₂	MeO H NH ₂	95
4	Me NH ₂	MeO H S NH ₂ Me S	92
5	MH ₂ Me	Me N N NH ₂	62
6	NH ₂ NO ₂	H S NH2	ND ^b
7	F NH2	F S NH2	75
8	NH ₂ Me	Me N N N H ₂ S S	87
9	Me NH ₂	Me H NH ₂	88
10	NC NH2		65 ^b
11	NH ₂		88
12	~~	NH ₂	82

^aCompounds were confirmed by both IR and 1H NMR analysis. ^aBase (KOH (1 eq)) andtemp 85 °C were used.

Two-Day International Conference on "Materials for Energy and Environmental Protection (ICMEEP-18)

The mechanism of formation for phenyl thiourea from aniline is shown in below **Scheme 1**. The experimental evidence and from the literature reports the mechanism is proposed. As we shown in scheme 1, aniline (1) reacts with carbondisulphide in the presence of base (Et_3N) and respective solvent to give thiocarbomate salt **P**. It may co-ordinate with iodonium and followed by remove the proton to afford the intermediate Svia intermediate complexes **Q** and **R**. Desulfurization of **S** afforded thioisocynate X that reacts with ammonium to give target thiourea **Y**.

Scheme 1: Proposed mechanism

III. Conclusion

In conclusion, we have developed neat, clean and efficient methodology for the synthesis of aromatic thioureas. This reaction involved consecutive desulphurization and addition. The reactions are rapid and facile and accomplished under mild reaction conditions. All the reactions readily underwent optimized conditions to provide target products in moderate to excellent yield.

Acknowledgements

The authors are grateful to the GITAM (Deemed to be University) and sir C R Reddy (A) College for their constant encouragement

References

- (a) Kearney, P. C.; Frenandez, M.; Flygare, J. A. J. Org. Chem. 1998, 63, 196–200; (b) Boga, C.; Forlani, L.; Silvestroni, C.; Corradi, A. B.; Sagarabotto, P. J. Chem. Soc., Perkin Trans. 1 1999, 1363–1368.
- [2] Patil, D. G.; Chedekel, M. R. J. Org. Chem. 1984, 49, 997–1000.
- [3] Kasmi, S.; Hamelin, J.; Benhaoua, H. *Tetrahedron Lett.* **1998**, 39, 8093–8096.
- [4] (a) Kidwai, M.; Venkataramanan, R.; Dave, B. Green Chem. 2001, 3, 278–279; (b) Paul, S.; Gupta, M.; Gupta, R.; Loupy, A. Synthesis.2002, 75–78.
- [5] Anshu, D.; Kapil, A.; Meha, S. Synth. Commun. **2004**, *34*, 1141–1155.
- [6] McCall, J. M.; Tenbrink, R. E.; Ursprung, J. J. J. Org. Chem. 1975, 40, 3304.
- [7] (a) Hu, L. Y.; Guo, J.; Magar, S.; Fischer, J. B.; Burkehowie, K. J.; Durant, G. J. J. Med. Chem. 1997, 40, 4281; (b) Robinson, J. R.; Brown, W. H. Can. J. Chem. 1951, 29, 1069.
- [8] (a) Jia, Q.; Cai, T.; Haung, M.; Li, H.; Xian, M.; Poulos, T. L.; Wang, P. G. J. Med. Chem. 2003, 46, 2271; (b) Cai, T.; Xian, M.; Wang, P. G. Bioorg. Med. Chem. Lett. 2002, 12, 1507; (c) Kumar, V.; Kaushik, M. P.; Mazumdar, A. Eur. J. Org. Chem. 2008, 1910; (d) Saneyoshi, M.; Tokuzen, R.; Maeda, M.; Fukuoka, F. Chem. Pharm. Bull. 1968, 16, 505; (e) La Mattina, J.L. J. Heterocycl. Chem. 1983, 20, 533.
- [9] Stephens, R. W.; Domeier, L. A.; Todd, M. G.; Nelson, V. A. Tetrahedron Lett. 1992, 33, 733.
- Heinelt, U.; Schultheis, D.; Jager, S.; Iindenmaire, M.; Pollex, A.; Beckmann, H. S. g. *Tetrahedron*2004, *60*, 9883–9888.
- [11] Loev, B.; Bender, P. E.; Bowman, H.; Helt, A.; McLean, R.; Jen, T. J. Med. Chem. 1972, 15, 1024–1027.
- [12] (a) Frank, R. L.; Smith, P. V. Org. Synth. Coll. Vol. III,1955, 735; (b) Rasmussen, C. R.; Villani, F. J., Jr.; Weaner, L. E.; Reynolds, B. E.; Hood, A. R.; Hecker, L. R.; Nortey, S. O.; Hanslin, A.; Costanzo, M. J.; Powell, E.T.; Molinari, A. J. Synthesis1988, 456–459.
- [13] Moor, M. L.; Crossely, F. S. Org. Synth. Coll. Vol. III, 1955, 617.
- [14] (a) Erickson, J. G. J. Org. Chem. 1956, 21, 483–484. (b) Bernstein, J.; Yale, H. L.; Losee, K.; Holsing, M.; Martins, J.; Lott, W. A. J. Am. Chem. Soc.1951, 73, 906–912. (c) Kotetsu, M.; Fukuta, Y.; Ishihara, H. Tetrahedron Lett. 2001, 42, 6333–6335. (d) Vazquez, J.; Bernes, Sylvain; Reyes, Yasmi; Maya, Monica; Sharma, Pankaj; Alvarez, C.; Gutierrez Synthesis 2004, 1955–1958; (e) Katritzky, A. R.; Kirichenko, N.; Rogovoy, B. V.; Kister, J.; Tao, H. Synthesis2004, 1799–1805.